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1. Introduction 

       Climate change is defined by the 

accelerated misuse of natural resources by 

humans. Significant changes in weather 

patterns, including global warming, altered 

rainfall patterns, rising sea levels, and other 

atmospheric changes, are being used by nature 

to highlight this misuse. Human activities, such 

as greenhouse gas emissions from fossil fuels 

and deforestation, play a crucial role in these 

changes (Khalili et al., 2016b). The detection, 

simulation, and prediction of climate change 

and its components such as climate predictors of 

CanESM2 and CanESM5 have become 

essential for the optimal management of water 

resources in recent years. Various models have  

been examined to simulate and predict 

precipitation under the influence of climate 

factors, and the impact of climate change on 

water resources and agricultural production has 

been studied. The simulation of rainfall and its 

pattern is a critical aspect of climate modeling, 

especially in the context of climate change 

(Tabatabaei et al., 2025). Accurate rainfall 

predictions are essential for effective water 

resource management, agriculture, and disaster 

preparedness. Recent advancements in machine 

learning techniques, particularly Random 

Forest (RF), and some useful models such as 

Gaussian Process Regression (GPR) and 

Contemporaneous Autoregressive models 

(CARMA), have shown promise in improving 

the precision of rainfall simulations (Khalili et 

al., 2016b; Ahmad et al., 2019). 

Sustainable Earth Trends 

This study investigates the performance of three models Random Forest, Gaussian 

Process Regression and Contemporaneous Autoregressive Moving Average in 

simulating rainfall values at a rain gauge station, Khorramadad, Iran base on 

CanESM2 predictors. The models were evaluated using Root Mean Square Error 

and Nash-Sutcliffe Efficiency statistics to determine their predictive accuracy and 

efficiency. In the training phase, RF model exhibited an RMSE of 3.98 mm and an 

NSE of 0.32, indicating moderate predictive accuracy and efficiency. GPR showed 

improved performance with an RMSE of 2.55 mm and an NSE of 0.67, reflecting 

better predictive accuracy and a higher level of efficiency than RF. CARMA model 

demonstrated the best performance, achieving an RMSE of 1.2 mm and an NSE of 

0.94, signifying high predictive accuracy and excellent efficiency. In the testing 

phase; the progressive improvement in RMSE values from 4.8 mm (GPR) and 4.1 

mm (RF) to 1.3 mm (CARMA) across the models highlights the increasing 

accuracy in rainfall simulation. Similarly, the NSE values, ranging from 0.15 

(GPR) and 0.2 (RF) to 0.93 (CARMA), underscore the enhanced efficiency of the 

models. The results of a graphical examination of different models in rainfall 

simulating values at the studied station also showed that the values simulated by 

the CARMA model are much more similar in terms of dispersion to the observed 

values. Among the three, CARMA model stands out as the most reliable and 

effective model for simulating rainfall values, making it a valuable tool for 

hydrological studies and water resource management. 

Journal homepage: http://sustainearth.sbu.ac.ir 

                                                           Sustainable Earth Trends 5(3)   2025   36-51 

by the authors. Submitted for possible open access publication under the terms and conditions of the  2025Copyright: © 

).s://creativecommons.org/licenses/by/4.0/httpCreative Commons Attribution (CC BY). license ( 

 

Keywords: 
CARMA Model 

Contemporaneous Simulation 
Gaussian Process 

Random Forest 
 

Article history:  

Received: 02 Nov 2024  

Accepted: 02 Jan 2025 
 

 
 

*Corresponding author 

E-mail address:  

 nazeri.mh@lu.ac.ir  
(M. Nazeri Tahroudi) 
 

 

Citation:  

Ahmadi, F. & Nazeri Tahroudi, M., 

(2025). Investigating the impact of 
climatic components on daily rainfall 

simulation (Case study: Khorramabad 

station), Sustainable Earth Trends: 
5(3), (36-51). 
 

DOI: 10.48308/set.2025.238066.1099 
 

 

 

 
 

https://orcid.org/0000-0002-6871-2771
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.48308/set.2025.238066.1099


                                                                                  Ahmadi, F. & Nazeri Tahroudi, M., / Sustainable Earth Trends     5(3)  2025    36-51                                         37 

 
(CARMA), have shown promise in improving 

the precision of rainfall simulations (Khalili et 

al., 2016b; Ahmad et al., 2019).  

Random Forest is a powerful ensemble learning 

method that has been successfully utilized in 

various environmental modeling scenarios, 

including rainfall prediction (Ali et al., 2020). 

Its ability to handle complex data structures 

makes it particularly suitable for modeling 

nonlinear relationships between climate 

predictors and rainfall outcomes (Nazeri 

Tahroudi et al., 2023; Bageri et al., 2023). For 

instance, a study demonstrated that RF is 

effective in managing the interactions among 

multiple climate predictors, thus outperforming 

traditional linear models in predicting rainfall. 

This adaptability is crucial in climate studies, 

where datasets are often incomplete or exhibit 

nonlinear characteristics (Lee et al., 2017). 

In addition, RF has been employed to generate 

multi-model ensemble (MME) precipitation 

and temperature data. The findings indicate that 

the MME generated using RF significantly 

enhances the accuracy of climate simulations 

compared to simpler methods (Lee et al., 2017). 

The model’s ability to capture complex 

relationships between climate predictors and 

precipitation is a notable advantage, making RF 

a valuable asset in rainfall simulation studies. 

Research has also highlighted the application of 

RF in related fields, such as predicting flood 

susceptibility. A study utilizing RF and 

boosted-tree models in Seoul revealed high 

accuracy in predicting flood-prone areas, 

achieving validation accuracies of 78.78% for 

regression and 79.18% for classification (Dou 

et al., 2019). This demonstrates the model's 

robustness in environmental applications and 

its capacity to integrate various climate 

predictors, such as topography and land use, to 

simulate rainfall-related events. Moreover, RF 

has shown effectiveness in handling high-

dimensional data, providing insights into 

variable importance—which is critical for 

understanding factors contributing to flood 

risks (Dou et al., 2017). The implications of 

these findings extend to rainfall simulation, 

suggesting that RF can enhance the reliability 

of predictions in changing climate conditions. 

In the field of climate change research and its 

impact on meteorological and hydrological 

parameters, various researchers have 

demonstrated the effects of climate change 

concerning precipitation and temperature 

changes. For instance, Kouhi et al. (2012) 

analyzed extreme precipitation events in the 

Kashaf River basin using statistical 

downscaling methods and provided future 

scenarios. Their findings indicated that 

significant changes in precipitation patterns are 

expected in the near future, with an increase in 

the frequency and intensity of extreme 

precipitation events. 

Mohammadi et al. (2017) examined trends in 

daily extreme precipitation indices in Iran using 

24-hour data from 47 synoptic stations over the 

period from 1982 to 2012. Their results showed 

that annual precipitation decreased at 92% of 

the stations, with western stations and the 

Zagros foothills experiencing a more 

pronounced declining trend.  

Askarizadeh et al. (2018) studied fluctuations in 

extreme precipitation indices in Mashhad using 

climate models and downscaling techniques. 

Data from the HadCM3, NCCCSM, and 

CNCM3 models under the B1A and A2 

scenarios were extracted for two future periods 

(2018-2021 and 2100-2102). Their research 

indicated that climate change could lead to 

increased frequency and intensity of extreme 

precipitation in Mashhad, particularly in urban 

and peripheral areas. Zarei et al. (2019) 

predicted climatic elements of temperature and 

precipitation for the synoptic station in Gorgan 

using the SDSM downscaling model and 

outputs from the CanESM climate change 

model under various scenarios. The results 

suggest that in the near and mid-term future, 

precipitation will decrease from February to 

August, with a projected reduction of up to 

47.51 mm during the distant period from 

December to August. Chengcheng et al. (2024) 

predicted changes in precipitation and 

temperature in the Beijing-Tianjin-Hebei 

region using ten models under RCP8.5 and 

RCP4.5 scenarios, showing that the MIROC-

ESM-CHEM model is more consistent in 

predicting future precipitation capacity. 

Additionally, RCP8.5 indicates a greater 

increase in temperature compared to RCP4.5. 

Vijayakumar et al. (2024) forecasted future 

climate changes in the state of Odisha, India, 

under RCP 4.5 and RCP 8.5 scenarios, 

indicating that temperatures will rise 

significantly in the coming centuries, 

particularly in western Odisha, with a notable 

increase in annual precipitation.  

Bagora et al. (2024) examined precipitation 

variability patterns in the upper Chambal River 

basin up to the Gandhi Sagar Dam, utilizing the
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SDSM model to refine results across three 

projected timeframes (2006–2036, 2037–2067, 

and 2068–2098) under RCP scenarios 2.6, 4.5, 

and 8.5. The results indicate that annual 

precipitation is expected to increase by 0.22%, 

11.21%, and 5.65% during these timeframes, 

respectively.  

Based on literature review, it appears that 

various models have been employed in climate 

change studies worldwide, depending on their 

specific nature (Ali et al., 2020; Mianabadi et 

al., 2023; Vijayakumar and Ramaraj, 2024; 

Nazeri Tahroudi and Mirabbasi, 2025). The 

present study aims to evaluate different 

statistical models regarding their performance, 

error rates, and efficiency, with the goal of 

identifying the best model for simulating and 

downscaling precipitation values at stations 

based on the fifth assessment report scenarios. 

 

2. Material and methods 

       Lorestan Province is located in western 

Iran and has diverse climatic features. 

Considering its position in the Central Zagros, 

this region includes high mountains and deep 

valleys. The average annual temperature ranges 

from 15 to 30 degrees Celsius, and the mean 

annual rainfall is about 600 to 800 millimeters. 

This province is situated between 50 to 55 

degrees north longitude and 30 to 35 degrees 

south latitude. The presence of major rivers 

such as the Karkheh and Seymareh, which play 

an important role in irrigation and water supply 

for the province, increases the significance of 

studying climatic changes. The objective of this 

research is to simulate rainfall amounts at the 

Khorramabad rain gauge station based on the 

climatic parameters of CanESM2 model. In this 

study, daily rainfall data from the Khorramabad 

weather station, as well as climate predictors 

derived from the fifth Intergovernmental Panel 

on Climate Change (IPCC) report, have been 

utilized (tpps://climate-scenarios.canada.ca/?page=main). 

The geographical location of the Khorramabad 

weather station is illustrated in Fig. 1, and the 

changes in rainfall at this station during the 

statistical period from 1982 to 2023 are shown 

in Fig. 2. The statistical characteristics of the 

rainfall amounts are also presented in Table 1. 

 

 
Fig. 1. Geographical location of the Khorramabad rain gauge station in Iran and Lorestan province.
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Fig. 2. Changes in rainfall amounts at the Khorramabad rain gauge station during the statistical period from 1982 to 2023 on a daily scale. 

Table 1. Statistical characteristics of rainfall components at the studied station. 

Max (mm) AVE (mm) STDEV VAR KURT SKEW 

83 1.28 5.03 25.26 50.77 6.22 
 

2.1. Fifth IPCC report 

The fifth IPCC report includes the 

Representative Concentration Pathways 

(RCPs), known as RCP 126, RCP 245, and RCP 

585 (Amirabadizadeh et al., 2019). These 

scenarios are part of the climate change 

projections developed by the IPCC for 

modeling and predicting the effects of climate 

change and greenhouse gas reduction policies. 

Each of these scenarios represents different 

levels of greenhouse gas emissions and their 

impacts on the global climate (Swart et al., 

2019; Javaherian et al., 2021). 

 
2.1.1. RCP 126 

This scenario is recognized as the “low-

emission” scenario. The primary goal is to limit 

the increase in temperature to less than 2 

degrees Celsius compared to pre-industrial 

levels. Achieving this goal requires significant 

and rapid reductions in greenhouse gas 

emissions (Chylek et al., 2011). This scenario 

can help preserve ecosystems and reduce the 

risks associated with climate change. 

 
2.1.1.1. Strategies for RCP 126 

• Extensive use of renewable energy sources 

(such as solar, wind, and hydrogen). 

• Implementation of carbon capture and 

storage (CCS) technologies. 

• Changes in energy consumption patterns 

and optimization of consumption. 

It can mitigate negative impacts such as rising 

sea levels, droughts, and severe storms. 

 

2.1.2. RCP 245 

This scenario is considered a “medium-term” 

scenario. In this scenario, greenhouse gas 

emissions initially increase and then gradually 

decrease. The goal is to limit the temperature 

increase to around 2.5 degrees Celsius. A 

higher likelihood of more serious issues 

compared to RCP 126, but with measures to 

mitigate negative impacts. 

 
2.1.2.1. Strategies for RCP 245 

• A combination of renewable energy and 

fossil fuels with energy optimization 

technologies. 

• Gradual implementation of emission 

reduction policies. 

Increased temperatures and their effects on 

climate patterns and ecosystems. 

 
2.1.3. RCP 585 

This scenario is known as the “high-emission” 

scenario and indicates a lack of serious action 

to reduce greenhouse gas emissions. In this 

scenario, temperature increases are expected to 

exceed 4 degrees Celsius. This scenario could 

lead to severe and irreversible consequences, 

including significant sea level rise, drastic 

changes in climate patterns, and environmental 

and humanitarian crises. There are greater risks 

to public health, agriculture, and biodiversity. 

 
2.1.3.1. Strategies for RCP 585 

• Continued use of fossil fuels without 

significant changes in energy policies. 
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• Neglect of emission reduction 

technologies and consumption 

optimization. 

 
2.2. Mann-Kendall Trend Test 

The Mann-Kendall Test is a non-parametric 

statistical test used to identify trends in time 

series data. This test is particularly useful in 

environmental and climatic sciences for 

analyzing changes in variables such as 

temperature, precipitation, and other climatic 

parameters. The Mann-Kendall Test has been 

widely used in hydrology, climatology, and 

meteorology. It was developed by Mann (1945) 

and Kendall (1975). In this test, the statistic is 

calculated as follows (Khalili et al., 2016) (Eq. 

1): 

( )sgn
n 1 n

j i

i 1 j i 1

S x x
−

= = +

= −   (1) 

Where jx are sequential data values, n is the 

length of the dataset, and ( )sgn  is the sign 

function are defined as follows (Eq. 2): 

( )sgn

1 if

if

1 if



 






= =
− 

 
(2) 

Where it is the number of identical data points 

in ith group, 𝑚 is equal to the number of paired 

groups. The standardized test statistic (Z) is 

calculated as follows (Eq. 3): 

( )

( )

S 1
S

Var S

Z S

S 1
S

Var S

−





= =
 +
 



 

( )
( )( ) ( )( )

m

i i i

i 1

n n 1 2 n 5 t t 1 2t 5

V S
18

=

− + − − +

=


 

(3) 

 

The standardized test statistic MK1 (Z) follows 

a standard normal distribution with a mean of 

zero and a variance of one. The null hypothesis 

is accepted under the condition 

1 2 1 2Z Z Z − −−   . A very useful indicator 

in the Mann-Kendall test is the slope of the 

trend line, or the Sen’s slope, which indicates 

the magnitude of the monotonic trend. The 

trend slope is estimated using the method 

presented by Theil (1950) and Sen (1968) with 

the following relationship (Eq. 4): 

j ix x
Median i j

j i


− 
=   

− 

 (4) 

Where 𝛽 is the estimator of the trend slope, 𝑥𝑖 
and 𝑥𝑗 are the 𝑖-th and 𝑗-th observational values, 

respectively. Positive values indicate an 

increasing trend, while negative values indicate 

a decreasing trend. This method has been 

widely used in hydrological studies. It is 

important to note that estimating the Sen’s 

slope is necessary for the calculations of the 

modified Mann-Kendall test. The modified 

Mann-Kendall method was developed by 

Kumar et al. (2009) by removing the effects of 

internal autocorrelation. In this method, the 

first-order autocorrelation coefficient is 

calculated, and if it is significant, it is removed 

from the data series. This method has also been 

applied by Burn et al. (2004), Lu et al. (2008), 

and Bandopadhyay et al. (2009). 

 
2.3. Random forest algorithm 

The Random Forest algorithm was introduced 

by Breiman (2001) as an ensemble learning 

method for regression and clustering problems 

based on the development of decision trees. A 

random forest is a collection of unpruned trees, 

where each tree is generated using a recursive 

partitioning algorithm. In other words, a 

random forest is a combination of several 

decision trees, each built using multiple self-

organizing samples from the data (Friedman et 

al., 2001). To create a regression tree, recursive 

partitioning and multiple regressions are 

utilized. The decision process at each internal 

node of the root node is repeated according to 

the tree rule until a previously determined 

stopping criterion is met. In the RF method, a 

random vector 𝑋𝑛, which is independent of the 

random vectors 𝑋1,𝑋2,𝑋3,…,𝑋𝑛−1, is generated 

for the 𝑛training dataset and 𝑋𝑛, producing a set 

of trees equal to 𝑛 as described below (Eqs. 5 

and 6) (Breiman, 2001): 

 1 2( ), ( ),..., ( )n nX h x h x h x=
 

(5) 

 1 2( , ), , ,...,n n ph h x X x x x x= =
 

(6) 

The above 𝑝-dimensional vector forms a forest, 

and the outputs for each tree are provided as 

follows (Eq. 7):
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1 21 2
( ), ( ),..., ( )nn

y h x y h x y h x= = =
 

(7) 

In the above equation, 1Y  is the output of the n-

th tree. To obtain the final output, the average 

of all the predictions from the trees is calculated 

(Breiman, 2001). 

 
2.4. Gaussian Process Regression (GPR) 

Gaussian regression operates based on a 

Bayesian approach by determining a 

probability distribution over all possible values 

available as inputs to the system (Kim and Gu, 

2004). The Bayesian approach to regression 

establishes a probability distribution over all 

possible values for each parameter in a 

proposed function rather than providing precise 

values, based on classical approaches (Birge, 

2004). To achieve this, Bayes’ theorem is 

utilized (Sain et al., 1994; Burt et al., 2019; Yu 

et al., 2019). 

 
2.5. Contemporaneous Autoregressive Moving 

Average (CARMA) 

Various methods are required for analyzing and 

modeling hydrological time series. A 

characteristic feature of simultaneous models is 

the diagonal parameter matrix, where the 

estimation of parameters is independent of 

univariate models. Among the multivariate 

linear models, we can mention the multivariate 

autoregressive model, the simultaneous 

autoregressive moving average model defined 

as CARMA(p,q), the combined simultaneous 

and moving average model defined as CSM-

CARMA(p,q), and the seasonal multivariate 

autoregressive model defined as MPAR(p). 

Modeling multivariate hydrological processes 

based on the complete multivariate ARMA 

model often leads to challenges in parameter 

estimation. The CARMA model (simultaneous 

autoregressive moving average model) was 

proposed as a simpler alternative to the 

complete multivariate ARMA model (Salas et 

al., 1980). In the CARMA(p,q) model, the 

parameter matrices for both the autoregressive 

and moving average models are assumed to be 

diagonal, allowing a multivariate model to be 

considered independently of the univariate 

ARMA model. Thus, instead of jointly 

estimating the model parameters, they can be 

estimated independently for each univariate 

ARMA station, which aids in identifying the 

best univariate ARMA model. Therefore, if a 

complete multivariate ARMA model is 

employed, the different temporal dependency 

structures can be modeled as a similar 

dependent structure over time for all stations 

rather than for each station separately. 

The CARMA(p,q) model for 𝑛 stations can be 

represented as follows (Eq. 8): 

(8) 
1 1

p q

t t j t j t jj
i j

Y Y   − −
= =

= + − 
 

Where Yt is an 𝑛×1 column matrix of 

observational series with a normal distribution 

and zero mean, representing different stations 

𝑘=1,2,…,𝑛. φφφ
p21

,...,, is an 𝑛×𝑛 diagonal 

matrix of autoregressive (self-correlated) 

model parameters, and θθθ q21
,...,,  is an 𝑛×𝑛 

diagonal matrix of moving average model 

parameters. Additionally, εt
 is an 𝑛×1 matrix of 

normally distributed random data with zero 

mean and covariance-variance g (Eq. 9). 
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The CARMA model is capable of preserving 

the zero-lag cross-correlation in the space 

between different stations. Additionally, the 

temporal dependency structure for each station 

is defined by the parameters 𝑝 and 𝑞 (Salas et 

al., 1980). 

 
2.5.1. Parameter Estimation of the CARMA Model  

Considering 𝑁 years of data at each station 
( )i

tY
 

with observational data, where 𝑖=1,2,3,…,𝑛, 

the general model matrix 𝑌𝑡 is described as 

follows (Eq. 10): 
(10) ZY tt

σμ +=
 

where μ and σ represent the mean and variance 

of Yt, respectively. The standardization of the 

variables is calculated using the following (Eq. 

11): 

(11) ( ) ( ) ( ) ( )
( ) / , 1,2,3,...,

i i i i
t t t tZ y i n = − =

 

Parameters of the CARMA(p(i), q(i)) model are 

determined in a manner similar to the 

parameters of the ARMA model. The residual 

time series of the model is independent of time 

but is dependent on each other (spatially 

dependent). This cross-dependency can be 

modeled using the following relationship (Eqs. 

12 and 13):
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Where B is estimated using the following (Eq. 

14): 

(14) 0

T MBB


=  
Where 

0M


 represents the zero-lag 

autocorrelation matrix, which is calculated 

from the following matrix (Eqs. 15 and 16): 
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Where 
( i )
t  is the mean of the N−k data 

corresponding to station i, and 
)(i

kt+
 is the mean 

of the N−k data corresponding to station j. 

Finally, the parameter matrix of the 

CARMA(p,q) model is obtained using the 

following relationship (Eq. 17) (Matalas, 

1967): 

(17) 1

011

_

M̂M̂Â =  
 

2.6. Model evaluation criteria 

In order to assess the accuracy and efficiency of 

the models under consideration, the Root Mean 

Square Error (RMSE) and the Nash-Sutcliffe 

Efficiency (NSE) statistics were used as 

follows (Eqs. 18 and 19): 

1- Root Mean Square Error (RMSE): 

(18) 

n
' 2

i i

i 1

( Q Q )

RMSE
n

=

−

=


 
 

2-Nash-Sutcliffe Efficiency Coefficient 

(19) 

T
' 2

i i

i 1

T
2

ii

i 1

( Q Q )
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( Q Q )

=

=

−

= −

−




 

Where: iQ is the actual or observed data, 
'

iQ  

represents the predicted data,  Q is the mean of 

the data, and n is the number of data points 

(Nash and Sutcliffe, 1970; Swinscow and 

Campbell, 2002; Salas et al., 1980).  

3. Results and discussion 

 In this section, the results of daily rainfall 

simulation based on selected climatic 

components are presented to compare the 

performance and accuracy of the models used. 

The results of the simulations were evaluated 

using statistical measures, followed by the 

correlation coefficient during the training and 

testing phases. Before simulating the 

precipitation values at the studied station using 

existing models, the trend of changes in 

precipitation values was examined using the 

modified Mann-Kendall test, which accounted 

for internal autocorrelation. The results showed 

an incremental but insignificant trend in the 

annual precipitation values, with Z-statistic 

values = 0.1. 

 
3.1. Selection the climatic predictors corresponding 

to daily rainfall 

In this study, to select input values for the 

models under investigation, the correlation 

between climatic predictors and rainfall values 

at the study station was examined. Based on the 

higher correlation coefficient, the predictors 

Mean Sea Level Pressure, 1000 hPa Divergence 

of True Wind, 500 hPa Geopotential, and Air 

Temperature at 2 m were selected from 26 

predictors extracted from the CanESM2 climate 

model. Table 2 shows the climatic predictors, 

with the bolded items selected for simulating 

rainfall values at the study station. Ultimately, 

using the climatic predictors and rainfall values 

from the Khorramabad rain gauge station, the 

variations in rainfall values were simulated 

considering the components of climate change. 

In this regard, RF, GPR, and CARMA models 

were employed in two phases: training and 

testing. 
 

3.2. Results of simulating rainfall values at the 

Khorramabad station using the RF model 

The simulation of daily rainfall values at the 

Khorramabad station using the Random Forest 

(RF) model during the training phase is 

presented in Fig. 3. As shown in Fig. 3, the 1:1 

line does not form a 45-degree bisector, 

indicating that the simulated rainfall values do 

not align well with the observed values. 
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Considering the confidence interval of the 

simulation (95%), it can be observed that there 

is significant overestimation and 

underestimation in the RF model results at the 

Khorramabad station. The error rate (RMSE) 

calculated is 3.98 mm, and the model efficiency 

is 32 percent during the training phase, which is 

not considered satisfactory. The results of 

simulating daily rainfall values using the 

Random Forest model in the testing phase are 

also presented in Fig. 4. According to Fig. 4, the 

performance of the Random Forest model in 

simulating daily rainfall, considering the 

components of climate change, has decreased in 

the testing phase compared to the training 

phase. The model error has increased to 4.1 mm 

(RMSE), and the model efficiency (NSE) has 

dropped to 20 percent, which is not satisfactory 

given the confidence interval of the simulations 

and indicates weak certainty. Based on the 

results presented in Figs 3 and 4, it can be 

concluded that the Random Forest model does 

not possess the necessary efficiency for 

simulating daily rainfall values at the study 

station considering the climatic components. 

 

Table 2. Climatic predictors extracted from the CanESM2 climate model corresponding to the Khorramabad station. 

No Predictor Name 

1 mslp Mean sea level pressure 

2 p1_f 1000 hPa Wind speed 

3 p1_u 1000 hPa Zonal wind component 

4 p1_v 1000 hPa Meridional wind component 

5 p1_z 1000 hPa Relative vorticity of true wind 

6 p1th 1000 hPa Wind direction 

7 p1zh 1000 hPa Divergence of true wind 

8 p5_f 500 hPa Wind speed 

9 p5_u 500 hPa Zonal wind component 

10 p5_v 500 hPa Meridional wind component 

11 p5_z 500 hPa Relative vorticity of true wind 

12 p5th 500 hPa Wind direction 

13 p5zh 500 hPa Divergence of true wind 

14 p8_f 850 hPa Wind Speed 

15 p8_u 850 hPa Zonal wind component 

16 p8_v 850 hPa Meridional wind component 

17 p8_z 850 hPa Relative vorticity of true wind 

18 p8th 850 hPa Wind direction 

19 p8zh 850 hPa Divergence of true wind 

20 p500 500 hPa Geopotential 

21 p850 850 hPa Geopotential 

22 prcp Total precipitation 

23 s500 500 hPa Specific humidity 

24 s850 850 hPa Specific humidity 

25 shum 1000 hPa Specific humidity 

26 temp Air temperature at 2 m 
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Fig. 3. Results of simulating daily rainfall values at the Khorramabad station in the training phase using the random forest model. 

 
Fig. 4. Results of simulating daily rainfall values at the Khorramabad station in the testing phase using the random forest model. 

 

3.3. Results of simulating rainfall values at the 

Khorramabad station using the GPR model 

In the next step, the performance and 

efficiency of the Gaussian Process 

Regression (GPR) model in simulating 

daily rainfall values at the Khorramabad 

station, considering the selected climatic 

predictors, were evaluated in both the 

training and testing phases. The results of 

simulating daily rainfall values at the 

Khorramabad station using the GPR model 

in the training and testing phases are 

presented in Figs 5 and 6, respectively. As 

shown in Fig. 5, the performance of the 

GPR model in the training phase is better 

than that of the RF model. Specifically, the 

Root Mean Square Error (RMSE) is 

approximately 2.55 millimeters, and the 

model efficiency is estimated to be 67 

percent in the training phase. The 1:1 line 

in the training phase (Fig. 5) also shows a 

better fit compared to the similar instance 

in the RF model. Comparing Figs 5 and 3, 

it can be observed that the error in 

simulating daily rainfall at the 

Khorramabad station using the GPR model 

has decreased by about 36 percent 

compared to the RF model, and 

correspondingly, the model efficiency, as 

indicated by the Nash-Sutcliffe Efficiency 

(NSE) coefficient, has increased by 

approximately 109 percent. The 

performance of the GPR model, unlike the 
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RF model, is satisfactory in simulating 

daily rainfall. 

In the testing phase, as shown in Fig. 6, the 

performance of the GPR model in 

simulating daily rainfall has decreased 

compared to the training phase, and this 

decline is evident in both the error rate and 

the NSE coefficient. The 1:1 line in the 

testing phase for the GPR model also 

indicates poor performance in simulating 

daily rainfall values at the Khorramabad 

station. In the testing phase, the error 

values, as indicated by the RMSE statistic, 

are equal to 4.8 millimeters, and the model 

efficiency, as indicated by the NSE statistic, 

is around 15 percent, which shows weaker 

performance compared to the RF model in 

the testing phase. Compared to the RF 

model in the testing phase, the GPR model 

has increased the error by approximately 17 

percent and decreased the model efficiency 

by about 25 percent. The increase in error 

and decrease in model performance during 

the testing phase compared to the training 

phase is reasonable; however, this level of 

decline indicates the Poor performance of 

both the RF and GPR models in simulating 

daily rainfall values in the study area. 
 

 
Fig. 5. Results of simulating daily rainfall values at the Khorramabad station in the training phase using the gaussian process regression 

model. 

 
Fig. 6. Results of simulating daily rainfall values at the Khorramabad station in the testing phase using the gaussian process regression 

model.
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3.4. Results of simulating rainfall values at the 

Khorramabad station using the CARMA model 

The results of simulating rainfall values 

using the CARMA model are presented in 

Figs 7 and 8 for the training and testing 

phases, respectively. The CARMA model 

demonstrated a different performance in 

simulating daily rainfall while considering 

the selected climatic predictors. Notably, 

the structure of the CARMA model differs 

from that of the RF and GPR models. This 

model, as a contemporaneous ARMA 

model, is utilized in meteorological and 

hydrological studies and is inherently 

stochastic, allowing it to establish a suitable 

relationship with stochastic values. As 

shown in Fig. 7, the 1:1 line covers the first 

quartile completely, indicating that the 95 

percent confidence interval reflects the 

performance of the CARMA model in the 

training phase. Although there are instances 

outside the 95 percent confidence interval, 

the CARMA model shows a satisfactory 

performance in simulating daily rainfall 

values compared to the other two models. 

The error rate is observed to be 1.2 mm 

(RMSE), with a model efficiency (NSE) of 

94 percent in simulating daily rainfall at the 

studied station. In the training phase, this 

represents a reduction in error of 

approximately 70 percent compared to the 

RF model and 53 percent compared to the 

GPR model, corresponding to reductions of 

2.78 and 1.35 mm, respectively. In the 

testing phase, as shown in Fig. 8, there are 

no significant reductions in the simulation 

of rainfall values at the studied station using 

the CARMA model. This indicates that in 

the absence of rainfall data, the 

performance of the CARMA model in 

simulating based on climatic predictors has 

been satisfactory, and this model exhibits 

higher certainty compared to the RF and 

GPR models. According to Fig. 8, the error 

of the CARMA model in the testing phase 

has decreased by approximately 68 percent 

compared to the RF model and 73 percent 

compared to the GPR model, while its 

efficiency has improved by about 365 

percent compared to the RF model and 520 

percent compared to the GPR model. The 

95 percent confidence interval and the 1:1 

line further illustrate this superiority over 

the RF and GPR models in both the training 

and testing phases. Khalili and Nazeri 

Tahroudi (2016) found the CARMA 

model's results satisfactory in their studies 

on simulating precipitation values. They 

introduced this model as the best alternative 

to univariate time series models. 
 

 
Fig. 7. Results of simulating daily rainfall values at the Khorramabad station in the training phase using the CARMA model.
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Fig. 8. Results of simulating daily rainfall values at the Khorramabad station in the testing phase using the CARMA model. 

3.5. Graphical comparison of simulated daily 

rainfall values using the studied models 

To compare the performance and efficiency of 

the models studied in this research, violin plots 

and Taylor’s diagrams were utilized, which also 

allow for the assessment of the certainty of the 

studied models, as presented in Figs 9 and 10. 
As shown in Fig. 9, the violin plot illustrates the 

observed and simulated daily rainfall values at 

the Khorramabad station. The results indicate 

that the dispersion of simulated rainfall values 

in the testing phase for the RF and CARMA  

models are better than that of the GPR model. 

Additionally, Fig. 9 reveals that the GPR model 

has a significant overestimation compared to 

the other two models, while the RF model 

exhibits a tendency for underestimation in 

simulating rainfall values. From Fig. 9, it can 

also be observed that in terms of similarity, the 

violin plot corresponding to the CARMA 

model performs better than the other two 

models. Therefore, it can be concluded that the 

certainty of the CARMA model is considerably 

higher than that of the other two models, 

showing a strong resemblance to the observed 

values. 

 
Fig. 8. Violin plot of observed and simulated values based on the studied models for analysis.
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Fig. 10. Taylor diagram of observed and simulated values based on the studied models for analysis. 

 

In Fig. 10, the Taylor diagram illustrating the 

observed and simulated values can also be seen. 

According to Figure 9, the correlation between 

the observed and simulated daily rainfall values 

at the studied station is approximately 0.6 for 

the RF model, about 0.95 for the GPR model, 

and around 0.99 for the CARMA model. The 

Taylor’s diagram indicates that the deviation of 

the simulated values using the CARMA model 

is closer to the observed values compared to the 

RF and GPR models. Overall, based on the 

results of error statistics, the Taylor’s diagram, 

and the violin plot, it can be concluded that the 

performance, certainty, and efficiency of the 

CARMA model are superior to those of the 

other studied models, thus identifying it as the 

best model. Khalili et al. (2016a) also reported 

satisfactory performance of the CARMA model 

in simulating meteorological and hydrological 

values in their studies, suggesting it as an 

alternative to simpler univariate ARMA 

models. The use of climatic predictors in 

simulating meteorological and hydrological 

variables is significant for two reasons: first, it 

indirectly considers the impacts of climate 

variability on simulations and climatic 

predictions; second, it employs multivariate 

models that incorporate influential parameters. 

This aspect has also been confirmed in the 

studies by Zarei et al. (2019). The performance 

of random forest and Gaussian process 

regression models has been examined in 

various studies, and their effectiveness has been 

validated in the context of time series models 

and other different models (Merufinia et al., 

2023; Vinta and Peeriga, 2024). 

4. Conclusion 

  In this study, the aim was to simulate daily 

rainfall considering climate variability and 

climatic predictors, and to evaluate the 

accuracy and performance of three models: 

Random Forest (RF), Gaussian Process 

Regression (GPR), and the Autoregressive 

Integrated Moving Average (ARIMA) model. 

The results indicated that during the training 

phase, the performance of the GPR model was 

better than that of the RF model; however, in 

the testing phase, the RF model outperformed 

the GPR model based on RMSE and NSE 

statistics. GPR models can sometimes overfit 

the training data, capturing noise along with the 

underlying patterns. This can lead to excellent 

performance during training but poorer 

generalization to new, unseen data during 

testing. Also, RF models, being ensemble 

methods, are generally more robust to 

overfitting. They average the results of multiple 

decision trees, which helps in capturing the 

overall trend without being too sensitive to 

noise in the training data.
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The 36% superiority of the GPR model in 

reducing error during the training phase, as 

indicated by the RMSE statistic compared to 

the RF model, demonstrated the success of the 

GPR model in simulating daily rainfall at the 

studied station. Nevertheless, in the testing 

phase, in the absence of observational data, the 

GPR model ranked third with a 17% reduction 

in error compared to the RF model. In contrast, 

the CARMA model consistently achieved the 

highest rank in both the training and testing 

phases when considering error values and 

model efficiency. This model demonstrated the 

best performance in simulating daily rainfall 

values, with an error of 1.2 mm and an 

efficiency coefficient of 94% in the training 

phase, and an error of 1.31 mm and an 

efficiency coefficient of 93% in the testing 

phase. GPR often outperforms RF in rainfall 

simulation for several reasons which have been 

pointed out in various studies (Mlakar et al., 

2019; Shabani et al., 2020).  

A: GPR models are inherently smooth and 

continuous, which is beneficial for simulating 

rainfall patterns that typically exhibit gradual 

changes rather than abrupt shifts. This 

smoothness allows GPR to capture the 

underlying trends more effectively.  

B: GPR provides a probabilistic framework that 

includes uncertainty estimates for its 

predictions that this is particularly useful in 

rainfall simulation, where understanding the 

confidence in predictions can be crucial for 

decision-making and risk assessment.  

C: GPR can model the spatial and temporal 

correlations in the data, which are essential for 

accurate rainfall simulation. This ability to 

incorporate and leverage correlations helps in 

producing more reliable and realistic 

simulations.  
D: GPR tends to perform better with smaller 

datasets compared to RF. In many cases, high-

quality rainfall data may be limited, making 

GPR a more suitable choice.  
E: While RF is good at handling non-stationary 

data by partitioning the input space, GPR can 

be adapted to non-stationary conditions through 

various modifications, such as using non-

stationary kernels. This adaptability enhances 

its performance in complex rainfall simulations. 
Overall, the combination of smoothness, 

uncertainty quantification, and the ability to 

model correlations makes GPR a superior 

choice for rainfall simulation in many 

scenarios. CARMA models are specifically 

designed to handle continuous-time data, 

making them well-suited for capturing the 

temporal dynamics of rainfall, which can be 

highly variable and continuous in nature. Also, 

Rainfall data often exhibit non-stationary 

behavior. CARMA models can effectively 

handle non-stationarity by incorporating both 

autoregressive and moving average 

components, providing a more accurate 

representation of the underlying processes. In 

contrast, while GPR is powerful for capturing 

smooth, nonlinear relationships and RF is 

robust for handling high-dimensional data, they 

may struggle with the continuous and highly 

variable nature of rainfall data and this is proof 

of the superiority of the CARMA model. Due 

to the stochastic and multivariate nature of the 

CARMA model, it can be applied to various 

climates around the world without restrictions. 
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